
HW6 due 05/02/2022
(+2 points for handing in on time)

Q.1 Matsubara sum.
a) Study (again!) the basic integral

∫ ∞

−∞

dp4

2π
1

p2
4 + ω2 = 1

2ω .

Consider

p4 = n∆p4

∆p4 = 2π
L4
,

where n = −Nmax,−Nmax +1, . . . , Nmax and convert the integral into a Riemann
sum

1
L4

∞∑
n=−∞

1
(∆p4)2

n2 + ω2
.

Numerically evaluate the sum (for large enough Nmax and small enough ∆p4)
and verify the integral.

b) The case of a finite L4 is an important result in finite temperature field
theory: L4 → β = 1/T is the inverse temperature, p4 → ωn = 2π

β n are the
Matsubara frequencies (for Bosons), and the sum of interest reads

G(β, ω) = 1
β

∞∑
n=−∞

1
ω2

n + ω2 .

The analytic result is

G(β, ω) = 1
2ω coth(βω2 ).

To derive this result, we can use the Euler’s product formula for sin(x)

sin(x) = x

∞∏
n=1

(
1 − x2

n2π2

)
.

Make sense of the sine formula by numerically computing the RHS (for a large
Nmax) and plotting the two functions.
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c) Show that

sin(ix) = i sinh(x) = i
ex − e−x

2

and obtain an analogous product formula for sinh(x). The result is

sinh(x) = x

∞∏
n=1

(
1 + x2

n2π2

)
.

d) Take the logarithm on both sides and reach

ln sinh(x) = ln x+
∞∑

n=1
ln

(
1 + x2

n2π2

)
.

Now take the derivative (with respect to x) on both sides and show that

∞∑
n=−∞

1
n2π2 + x2 = 1

x
coth(x).

e) Finish the job to show that

G(β, ω) = 1
2ω coth(βω2 ).

What is the β → ∞ limit? Explain.

Q.2
In the (3D) Fourier transform of 1

k2+m2 to the x-space we encounter the integral

∫
d3k

(2π)3 e
ik⃗·x⃗ 1

k2 +m2

= 1
2π2r

∫ ∞

0
dk k sin(kr) 1

k2 +m2 .

The integral can be difficult to handle numerically due to the oscillatory behavior
at large k. Consider instead a regulated version of the integral, e.g.

I(r; Λ) = 1
2π2r

∫ ∞

0
dk k sin(kr) 1

k2 +m2 e
−k2/Λ2

.

a) Evaluate the regulated integral at several Λ’s.

b) Show that the numerical result becomes stable at large values of Λ’s, and
approaches the analytic limit (remember what the answer is?).
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Q.3
a) From S = e2iδ = 1 + it, show that 2Imt = |t|2.
b) Given the scattering amplitude for a resonant process can be parametrized

as

f(E) ∝ 1
E − ER + iγ

2
,

show that the resonant phase shift δR(E) satisfies

tan δR(E) = −γ/2
E − ER

.

Plot the phase shift function with some reasonable values of the parameters.

Q.4
Derive the key results in the scattering theory:

a) The Green’s function: show that

G0
E(x) =

∫
d3q

(2π)3 e
iq⃗·x⃗ 1

E − q2

2mR
+ iδ

= 1
2π2r

∫ ∞

0
dq sin(qr) q

E − q2

2mR
+ iδ

= −2mR × 1
4πr e

+ipr.

b) Show that the G0
E satisfies

(E − Ĥ0)G0
E(x⃗1, x⃗2) = δ(3)(x⃗1 − x⃗2)

where Ĥ0 = − ∇2

2mR
.

c) The full Green’s function GE satisfies

(E − Ĥ)GE(x⃗1, x⃗2) = δ(3)(x⃗1 − x⃗2).

where Ĥ = Ĥ0 + V̂ . Derive the relation between GE and G0
E .

d) What about the full wavefunction ψ and the scattering amplitude f? How
can they be extracted from G0?
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Q.5
a) Numerically compute the S-wave phase shift δ(E) for a finite barrier:

V (r) = V0,

if x < R, otherwise zero. You can take mR = 1, V0 = 2.0, R = 1.5. Plot the
result in a suitable energy range: e.g. 0.1:14.0.

b) The effective spectral function

∆A(E) = 2 d

dE
δ(E)

corresponds to the change of the density of states due to interaction. Compute
∆A(E) for the finite barrier problem.
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