mini-Projects

presentations

- summarize key physics points in reading.
- 15 min presentation
 - 5-10 slides: demonstrating an intro. for basic theory / method, and the key results
 - numerical demonstration: in the form of a problem set (of course you need to solve it!)
- numerical codes

topics

You can form your own topic. Here are some suggestions (and guiding questions)

- coherent states
 - susy qm (first 2 chapters)
 - notes from Nicholas Wheeler
 - Qs:
 - \ast understand how the ladder operator works
 - * what are the key features of a coherent state?
- constituent quark model
 - quark model
 - Qs:
 - \ast how to understand the spectrum of charmonium states in the PDG: n, J, L, ?
 - * attempt to fit the low lying states.
 - * explore the effect of spin-orbit couplings.
- resonances
 - resonances
 - kinematics
 - Qs:
 - * understand the Breit-Wigner parametrization, fit this to the rho(770) state or Delta(1232) state.
 - * derive the 2- and 3-body decay formula for structureless decay.
 - * how to understand a Dalitz plot?
- Van der Waals parametrization of phase diagram
 - any Stat. Mech. Textbook, e.g. Kerson Huang and Pathria
 - molecules

- Qs:
 - * how attractive and repulsive forces affect the shape of phase diagram ?
 - * how Maxwell construction works?
 - * relate the Van der Waals parameters to those of a microscopic model, e.g. Walecka model.
- Ising model beyond nearest-neighbor forces
 - Kogut
 - intro. notes
 - Qs:
 - * study the order parameter and the susceptibility
 - \ast how the phase transition is modified by higher pairing forces
 - \ast hysterysis and how it evolves with temperature
 - \ast other objects: vortices, etc.