NumQM Spring2022

HW1 due 20/03/2022

(+1 points if you solve the problems with Julia)
(+1 points for handing in on time)

Q1 Residue theorem.

The Cauchy's residue theorem states that the line integral of an analytic function over a closed path Γ is given by ($2 \pi i$ times) the sum of residues:

$$
\oint_{\Gamma} d z f(x)=2 \pi i \sum_{\text {Res. }} f\left(z_{n}\right) .
$$

- Take

$$
f(z)=\frac{1}{z^{2}+1}
$$

and verify the residue theorem by numerically computing the integral along the paths:

- A) a square centered around the pole $z=i$;
- B) an upper semi-circle of radius $R=2$. Separate the contributions from the real line: - $\mathrm{R}: \mathrm{R}$ and the arc.
- Repeat the calculation in B) for a larger R. Show that the arc contribution decreases as $R \rightarrow \infty$ and only the real-line contribution remains, hence

$$
\int_{-\infty}^{\infty} d x \frac{1}{x^{2}+1}=\pi
$$

Q2 Schwinger proper time regularization.

Consider the following identities:

$$
\begin{aligned}
& \mathcal{A}^{-1}=\int_{0}^{\infty} d t e^{-t \mathcal{A}} \\
& \ln \mathcal{A}=-\int_{0}^{\infty} d t \frac{1}{t}\left(e^{-t \mathcal{A}}-e^{-t \mathcal{I}}\right)
\end{aligned}
$$

- With $\mathcal{A} \rightarrow p_{4}^{2}+\omega^{2}$, show (again!) that

$$
\int_{-\infty}^{\infty} \frac{d p_{4}}{2 \pi} \frac{1}{p_{4}^{2}+\omega^{2}}=\frac{1}{2 \sqrt{\omega^{2}}}
$$

- The second identity is useful for regulating divergent integral. Consider

$$
\begin{aligned}
W[\omega ; \Lambda] & =\int_{-\infty}^{\infty} \frac{d p_{4}}{2 \pi} \ln \left(p_{4}^{2}+\omega^{2}\right) \\
& \rightarrow \int_{-\infty}^{\infty} \frac{d p_{4}}{2 \pi} \int_{1 / \Lambda^{2}}^{\infty} d t\left(-\frac{1}{t}\right) e^{-t\left(p_{4}^{2}+\omega^{2}\right)}+C \\
& =-\int_{1 / \Lambda^{2}}^{\infty} d t \frac{1}{t^{\frac{3}{2}}} \frac{1}{2 \sqrt{\pi}} e^{-t \omega^{2}}+C
\end{aligned}
$$

Compute $W[\omega ; \Lambda]$ numerically for a large enough Λ. You can forget about the integration constant C. Compare with the analytic result:

$$
W[\omega ; \Lambda]=-\frac{\Lambda}{\sqrt{\pi}}+\omega+\mathcal{O}(1 / \Lambda)
$$

- This suggests the definition of a physical W function:

$$
W_{\text {phys. }}[\omega]=\lim _{\Lambda \rightarrow \infty}(W[\omega ; \Lambda]-W[0 ; \Lambda])=\omega
$$

Re-derive the previous result via

$$
\int_{-\infty}^{\infty} d x \frac{1}{x^{2}+\omega^{2}}=\frac{1}{2 \omega} \frac{\partial}{\partial \omega} W_{\text {phys. }}[\omega]
$$

- Generate a 3×3 positive definite matrix \mathcal{A}. Compute the inverse and determinant using the above identities.

Q3 Kinematics and threshold.

- Consider the scattering of two particles (of mass m_{1} and m_{2}) in the Center-of-Mass (COM) frame. The energy in this frame is also the invariant mass \sqrt{s} of the system, i.e.

$$
E_{\mathrm{COM}}=\sqrt{s}=\sqrt{q^{2}+m_{1}^{2}}+\sqrt{q^{2}+m_{2}^{2}}
$$

Show that

$$
q(s)=\frac{1}{2} \sqrt{s} \sqrt{1-\frac{\left(m_{1}+m_{2}\right)^{2}}{s}} \sqrt{1-\frac{\left(m_{1}-m_{2}\right)^{2}}{s}}
$$

- Explain why

$$
\operatorname{Im}(\ln (-1 \pm i \delta)) \rightarrow \pm \pi
$$

where δ is a small (positive) number. Numerically verify these results.

- A QFT computation of the self energy Σ_{R} of a resonance gives

$$
\Sigma_{R}(s)=2 \times \frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x \ln \left(m^{2}-x(1-x) s-i \delta\right)
$$

(The factor of 2 is the symmetry factor for identical particles.) Show that the self energy develops an imaginary part when the COM energy is above the threshold:

$$
\operatorname{Im} \Sigma_{R}(s)=-2 \times \frac{1}{2} g^{2} \frac{q}{4 \pi \sqrt{s}} \theta(\sqrt{s}-2 m)
$$

where

$$
q=\frac{1}{2} \sqrt{s} \sqrt{1-\frac{4 m^{2}}{s}}
$$

corresponds to the COM momentum for the case of $m_{1}=m_{2}=m$.

Q4 Logistic Map (again).

Consider the logistic map:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

- Produce the bifurcation diagram: (see Sem1 HW01 Q5) for a given r within $(0,4)$, iterate (starting from any initial value within $(0,1)$), collect the end point(s) and plot them as a function of r.
- Derive an analytic result for the stable end points within $r<3$. Plot it on top of the bifurcation diagram.
- For $r=3.6$, collect all the points $\left\{x_{j}\right\}$ from iterations and plot them in a normalized histogram. This is called the invariant density.
- Plot the invariant density at $r \rightarrow 4$. Compare with the analytic result:

$$
\rho(x)=\frac{1}{\pi \sqrt{x(1-x)}}
$$

- Here's how to understand the analytic result. Consider

$$
f(x)=4 x(1-x)
$$

Note that $f(1-x)=f(x)$. Find the two $x_{j}(x)(j=1,2)$ that are mapped to x , i.e.

$$
x=f\left(x_{j}\right)
$$

- The invariant density $\rho(x)$ can be written as

$$
\begin{aligned}
\rho(x) & =\int_{0}^{1} d x^{\prime} \rho\left(x^{\prime}\right) \delta\left(x-f\left(x^{\prime}\right)\right. \\
& =\sum_{j=1,2} \frac{\rho\left(x_{j}\right)}{\left|f^{\prime}\left(x_{j}\right)\right|}
\end{aligned}
$$

where $f^{\prime}\left(x_{j}\right)$ is the derivative of f evaluated at x_{j}. The task becomes verifying the functional form

$$
\rho(x)=\frac{K}{\sqrt{x(1-x)}}
$$

works. Finally, fix the constant $K=1 / \pi$ by requiring

$$
\int_{0}^{1} \rho(x)=1
$$

Q5 Particle adventure.

Visit the PDG website link to look up particle properties.

- Look up the Fermi coupling constant G_{F} and mass of W-boson M_{W}.
- Given

$$
\frac{G_{F}}{\sqrt{2}}=\frac{g_{W}^{2}}{8 M_{W}^{2}}
$$

what is the value of the weak interaction coupling constant g_{W} and $\alpha_{W}=$ $\frac{g_{W}^{2}}{4 \pi}$? Compare to the QED value

$$
\alpha_{E M}=\frac{1}{137},
$$

which one is stronger?

- How many pions are there? And how about the kaons? Include antiparticles and spin degeneracies in the counting, e.g. $\mathrm{N}($ electron $)=4$: electron (spin up, spin down); positron (spin up, spin down)
- Perform a similar counting for the $\Delta(1232)$ resonance.

