NumQM Spring2022

HW2 due 10/04/2022

(+1 points if you solve the problems with Julia)
(+1 points for handing in on time)

Q1 Low and High Temperature expansions.

- Fill in the steps in deriving the exact solution of the 1D Ising Model based on Transfer Matrix method. Obtain the analytic expressions of the partition function and average spin.
- Compare the results to the corresponding low and high temperature expansions of the partition function.
- Derive the low and high temperature expansions of the energy per site for the d-dimensional Ising Model (zero external field)

Q2 2D Ising Model.

- Write down the partition function in the low and high temperature expansions (at least 2 correction terms in each case).
- Compare the correction factors to the corresponding leading term. Show that the two series are the same if we map

$$
e^{-2 K} \leftrightarrow \tanh (K) .
$$

Plot the two functions versus K.

- Obtain an analytic expression of the critical coupling K_{c} at the point of intersection. (K is just the inverse temperature for $J=1$)
- The exact solution, due to Onsager, for the partition function reads (see textbook by Pathria or Kerson Huang)

$$
\begin{aligned}
\ln Z_{\text {persite }} & =\ln (\sqrt{2} \cosh 2 K)+\frac{1}{\pi} \int_{0}^{\pi / 2} d \phi \ln \left(1+\sqrt{1-\kappa^{2} \sin ^{2} \phi}\right) \\
\kappa & =\frac{2 \sinh 2 K}{\cosh ^{2} 2 K}
\end{aligned}
$$

Plot the exact solution for energy per site versus temperature. Compare with the low and high temperature expansions.

Q3 Feynman Parametrization.

- Prove the Feynman parametrization:

$$
\frac{1}{A B}=\int_{0}^{1} d x \frac{1}{(x A+(1-x) B)^{2}}
$$

- The self energy Σ_{R} of a resonance is obtained from

$$
\Sigma_{R}=i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q_{1}^{2}-m_{1}^{2}+i \delta} \frac{1}{q_{2}^{2}-m_{2}^{2}+i \delta}
$$

where

$$
\begin{aligned}
q_{1} & =q \\
q_{2} & =P-q \\
P^{2} & =s=\left(P^{0}\right)^{2}-\vec{P}^{2}
\end{aligned}
$$

are Minkowski 4-vectors. Use the Feynman parametrization to show that

$$
\Sigma_{R}=i g^{2} \int_{0}^{1} d x \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left((\tilde{q})^{2}-\Delta\right)^{2}}
$$

where

$$
\begin{aligned}
\tilde{q} & =q-(1-x) P \\
\Delta & =x m_{1}^{2}+(1-x) m_{2}^{2}-x(1-x) s-i \delta
\end{aligned}
$$

- After a shift of integration variable and a Wick's rotation:

$$
\begin{aligned}
d^{4} q & \rightarrow i d^{4} q_{E} \\
q^{2} & \rightarrow-q_{E}^{2}=-\left(q_{4}^{2}+\vec{q}^{2}\right),
\end{aligned}
$$

we obtain

$$
\Sigma_{R}=-g^{2} \int_{0}^{1} d x \int \frac{d^{4} q_{E}}{(2 \pi)^{4}} \frac{1}{\left(q_{E}^{2}+\Delta\right)^{2}}
$$

where q_{E} is in Euclidean space.
Use the Schwinger proper time regularization and perform the momentum integral. Show that

$$
\Sigma_{R}=\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x \ln \Delta+C
$$

This is the starting point of Q3 in HW01.
Hint: Recall the Schwinger proper time regularization scheme

$$
\begin{aligned}
\mathcal{A}^{-1} & =\int_{0}^{\infty} d t e^{-t \mathcal{A}} \\
\ln \mathcal{A} & =-\int_{0}^{\infty} d t \frac{1}{t}\left(e^{-t \mathcal{A}}-e^{-t \mathcal{I}}\right)
\end{aligned}
$$

The following relation is also useful:

$$
\mathcal{A}^{-2}=\int_{0}^{\infty} d t t e^{-t \mathcal{A}}
$$

Q4 Numerical study of 4D Ising Model (x2 points)

- Write a program to solve the 4D Ising Model. What is the critical temperature you get?
- Plot the average spin and the spin susceptibility as functions of temperature.
- Compute the average energy per site. Compare to the low and high temperature expansions.

