
NumQM Spring2022

HW5 due 10/06/2022
(+1 points if you solve the problems with Julia)

(+1 points for handing in on time)

Q1 Debye Screening in an electron gas
a) The two-body interaction among electrons, i.e. the (static) Coulomb po-

tential, is dressed by the ring diagram defined as

Π(k0, k⃗) = 2spin e
2
∫

d3ℓ

(2π)3
n(E1) − n(E2)

k0 + E1 − E2 + iδ

E1 = ℓ⃗2

2m

E2 = (ℓ⃗+ k⃗)2

2m .

with the occupation number n(E) approximated by the low temperature limit
(large β) of

n(E) → 1
eβ(E−EF ) + 1

,

EF = k2
F

2m defines the Fermi energy.

Study the static limit of the ring diagram: k0 = 0, and derive the analytic result

m2
D = −Π(k0 = 0, k⃗ → 0⃗) = e2 mkF

π2 ,

where mD is called the Debye mass.

b) Numerically study the ring diagram at k0 = 0 but for general k. Plot this
as a function of k. Compare with the analytic results at small and large k:

Πstatic(k0 = 0, k → 0) ≈ −m2
D

(
1 − 1

12
k⃗2

k2
F

)

Πstatic(k0 = 0, k → ∞) → −m2
D

4
3
k2
F

k2 .

c) The ring diagram dresses the potential via
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V (k⃗) = e2D0 −→ Ṽ (k0, k⃗) = e2D̃0

D̃0(k0, k⃗) = 1
D−1

0 − Π(k0, k⃗)

D0(k⃗) = 1
k⃗2
.

When we retain only the Debye screening mass, the effective potential becomes

Ṽ (k0 = 0, k⃗) ≈ e2

k⃗2 +m2
D

.

Show that the x-space potential is effectively screened:

e2

4πr → e2

4πr e
−mDr.

Verify this numerically.

d) The ring contribution to the partition function reads

∆ lnZring = −1
2 tr (ln(1 −D0Π) +D0Π)

≈ −1
2V

∫
d3k

(2π)3

(
ln(1 + m2

D

k2 ) − m2
D

k2

)
.

The second line follows from leading order static approximation. Compute the
integral and show that it leads to a non-analytic contribution ( in powers of e2 )
to the thermal pressure.

e) Now restore the k0 dependence. The collective propagation mode ω(k) can
be identified from the equation:

D0(k⃗)
−1

− Π(ω(k), k⃗) = 0.

Numerically solve for ω(k) (you may assume it to be real) for k < 0.3kF . This
is called the plasmon mode. (Take kF = m = 1 for simplicity.)

Hint: For each k, solve for the ω from the common root of the real and imaginary
part of the equation.

Write your result in terms of

ω(k)2 ≈ ω2
D + αk2.

Compare with the analytic results:
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ω2
D = 1

3 m
2
D

α = 3
5 .

Q2 Cluster / Virial Expansion
a) Consider the cluster expansion of the thermodynamic pressure

P

n0T
=
∑
ℓ=1

bℓξ
ℓ

where

n0 = 1
λ3 =

∫
d3k

(2π)3 e
−βE(k)

ξ = eµ/T

b1 = 1.

Given the density

n = ∂P

∂µ
= ξ

∂

∂ξ
βP,

the virial expansion corresponds to an expansion of P in terms of n:

P

nT
=
∑
ℓ=1

aℓ

(
n

n0

)ℓ−1
.

Show that

a1 = 1 = b1

a2 = −b2

a3 = −2b3 + 4b2
2

a4 = −3b4 + 18b2b3 − 20b3
2.

b) The 2nd coefficient in an cluster expansion can be obtained by

b2 = n0

2

∫
d3x12 f(r12)

f(r12) =
(
e−βU(r12) − 1

)
.
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Obtain an analytic expression for the hardcore potential:

U(r) =
{

∞ r <= R

0 r > R.

Explain the sign of b2 and its effect on pressure.

c) Derive the corresponding change in the virial expansion. Does a repulsive
interaction increase or decrease the pressure? The jargon is that repulsive
interaction gives a stiffer Equation of States.

d) Consider the Lennard-Jones potential

U(r) = a

r12 − b

r6 .

Plot the potential U(r) and the Mayer’s function f(r) with some reasonable
parameters. Show that at low temperatures b2 is dominated by the long distance,
attractive part of the potential. What happens when the temperature increases?

Q3 Method of auxiliary field.
Consider a 4-fermion interaction model

Z =
∫
DψDψ̄e

∫
ψ̄(iγ·∂−m)ψ+G (ψ̄ψ)2

.

Note that the integral is over an Euclidean space time.

a) Prove the relation

e

∫
g2

2m2
G

(ψ̄ψ)2

∝
∫
Dσ e

∫
(−gσψ̄ψ− 1

2m
2
Gσ

2)

and with this rewrite the 4-fermion interaction model as

Z →
∫
DσelnZF (MF =m+gσ)−

∫
1
2m

2
Gσ

2
.

where ZF (MF ) is the partition function for free fermions

lnZF (MF ) = tr ln (iγ · ∂ −MF )

= V4

∫ Λ d3k

(2π)3 2
√
k2 +M2

F + . . .

where V4 = βV . Identify G in terms of g and mG. Notice the similarity with
Fermi coupling constant for weak interaction.
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b) Suppose the functional integral over σ is dominated by a certain σ̄, such
that

Z =
∫
Dσ elnZF (MF =m+gσ)−

∫
1
2m

2
Gσ

2
≈ e−V4Γ(σ̄).

Derive a condition for Γ(σ̄) based on the steepest descent. This is called the gap
equation.

c) Solve the gap equation numerically at T = 0. (You may set g = 1.) Plot
σ/Λ versus G for m = 0 and m ̸= 0. Derive an analytic expression for
the critical coupling for the former case. What is the order of the phase
transition?

d) Find an explicit expression of the condensate via

⟨ψ̄ψ⟩ = − ∂

∂m

lnZ
V4

Verify that the condensate is negative. In the model, one can compute it via

−nS = ⟨ψ̄ψ⟩ = ∂

∂m
Γ(⟨σ⟩,m)

= ∂

∂m
Γ(⟨σ⟩,m) +

(
∂

∂σ
Γ(σ,m) ∂σ

∂m

)∣∣∣
σ=⟨σ⟩

.

Explain why the second term will not contribute and relate the condensate to σ.
(This is model dependent!)

Q4 P-wave Resonance.
a) Revisit Q3 in HW6 1st sem. This was a very crude model of a resonance.

A QFT-motivated approach would suggest

f(s) = K
1

s−m2
bare − Σ(s) .

Note that Σ is the self energy and is complex. The proportionality constant K
is irrelevant but can be worked out:

K = 2ImΣ(s)
2q(s)

q(s) = 1
2

√
s

√
1 − (m1 +m2)2

s

√
1 − (m1 −m2)2

s
.

The self energy of a P-wave resonance, after a (rather tedious) QFT calculation
(with some additional manipulations), gives
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ΣR = − g2

8π2

∫ 1

0
dx∆ ln ∆

∆ = xm2
1 + (1 − x)m2

2 − x(1 − x)s− iδ.

Show that the imaginary part reads

ImΣR = −4
3 ×

(
1
2 g

2 q3

4π
√
s
θ(

√
s−m1 −m2)

)
.

(Compare with Q3 HW1 sem02, a q(s)2 factor naturally emerges!)

b) Adjust the two parameters: mbare and g2 such that the model qualitatively
describes the ∆(1232) resonance. Work out an explicit expression for the
phase shift (in terms of Σ) and plot the result against

√
s. (use atan2)
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